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A general finite element model of a structural wood/adhesive connection was developed in this study and 
experimentally verified using a white light speckle technique. A bond link approach was developed and 
investigated to represent the adhesive connection. 

A comparison of the stress distributions obtained with the model and those recorded experimentally 
revealed very clo& agreement between the two techniques. Because the assumptions and results of the finite 
element model were verified with experimental evidence, it could be used to determine any number of 
geometric and material properties. In this study, the model was used to determine the influence of varying the 
overlap length on the distribution of normal and shear stresses. For the wood adherends used in this study, i t  
was found that the distribution of stress was non-uniform but became more uniform with increasing 
overlapped regions. 

KEY WORDS Wood/adhesive connections; finite element modeling; double lap joint; computer vision: 
stress distribution; image analysis. 

INTRODUCTION 

When the common overlap joint is loaded in tension or compression, the stress 
distribution is very non-uniform. Stress concentrations often occur at the ends of the 
overlap that are significantly higher than the average stress along the glueline. The 
purported effect of the nonuniformity of the stress distributions has appeared as a 
possible explanation for characteristic types of failure and reductions in expected 
strength. Yet the analytical techniques to date are very limited in their application to 
double overlap wood connections because the assumptions in the models often do not 
apply to wood members, and there is even less experimental data. As a result, the 
objectives of this study were to develop a general finite element model of a double 
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overlap wood joint, and to evaluate the model experimentally using the white light 
speckle technique for experimental mechanics. 

BACKGROUND 

Early Analytical Studies of Lap Joints 

One of the earliest analyses of lap joints of any kind was a theoretical analysis by 
Volkerson’ in 1938 on double lap joints. His analysis treated only the stress arising 
from the differential strain in the lap joints and did not examine the tension stress 
resulting from bending of the adherends. In his study, it was discovered that the 
distribution of stresses in a lap joint was not uniform. The highest stresses were shown 
to develop at either end of the overlap and the ratios of these peak stresses to mean 
stresses were influenced by the overlap length, the thickness of the adherends, the 
thickness of the adhesive layer, the stiffness of the adhesive, and the bending of the 
adherends. Goland and Reissner’ extended Volkerson’s analysis to include bending 
deformation of the adherends as well as transverse strains in the adhesive with the 
associated bending stresses. Although this analysis does include a few simplifications 
and approximations, it is to date one of the more rigorous mathematical studies of the 
stress distributions in single lap joints. 

By a variation and extension of Goland and Reissner’s method, Cornel13 determined 
the distribution of stress in cemented metal lap joints using the assumption that the 
adherends behaie like simple beams and the lower modulus adhesive layer can be 
represented by a number of shear and tension springs. Cornell developed a complicated 
set of differential equations to describe the transfer of load in one adherend through a 
spring system to the other adherend. With certain assumptions, this set of equations 
can be reduced to a pair of ordinary differential equations of the tenth order whose 
solutions are readily found. The mathematical analysis is fundamentally simple but the 
expressions involved are quite complicated. Cornell compared his theoretical calcula- 
tions with the results of photoelastic and brittle lacquer experiments and found that his 
spring-beam analogy solution gives a fairly accurate picture of the distribution of 
stresses in lap joints. 

There have been many studies conducted since the early work, but most of them rely 
on the basics as developed in Goland and Reissner’. In general, the results of the 
theoretical analyses to date indicate that the highest stresses develop at either end of the 
overlap and the ratios of these stresses to the mean stress (the concentration factor) are 
highly dependent on the overlap length. Complex or simple rigorous investigations 
using the theory of elasticity in general give the approximate highest stresses which 
result from the external loading for adherends and adhesives which are isotropic, 
elastic, and homogeneous. Wood is none of these. It is highly anisotropic, elastic only 
up to a point, and homogeneous only on a gross scale. 

Thus the theoretical results found using isotropic analyses and materials can only 
serve as indicators of the expected distributions and strength. The stress concentrations 
predicted at  the ends of the overlaps are very important in all structures, especially 
those joined by adhesive bonding. In theory, a sharp corner or crack causes an infinite 
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stress concentration referred to as a singularity, which is impossible in reality. But it is 
in just these regions of maximum stress where failure is likely to be initiated that the 
assumed boundary conditions of the mathematical theories are least representative of 
reality. 

Finite Element Modeling of Adhesive Connections 

The finite element method is a well-established means for mathematically modeling 
stress problems. Its advantages lie in the fact that the stresses in a body of almost any 
geometrical shape and composition can be determined. As a result, the method is 
especially useful for analyzing adhesive connections. In this method, the structure of 
the continuum being analyzed is approximated as the assembly of discrete regions 
(elements) connected at a finite number of points (nodes). The resulting set of 
simulataneous equations is then solved with a computer. If sufficient boundary 
conditions are specified to guarantee a unique solution, the displacements at each node 
in the structure can be obtained. Once a finite element model has been developed and 
verified experimentally, it is a powerful tool that can be expanded and used in place of 
expensive and time-consuming experimentation. 

A number of finite element investigations have been carried out on a wide range of 
adhesion problems. The only difficulty encountered with this approach is that 
modeling the glueline presents some problems. To overcome this difficulty some 
models have been used that model the bonded structure without taking special account 
of the glueline. Erdogan and Ratwani4 have found that if the glue interface is not 
accounted for, the load transfer between the adherends occurs at the outer boundaries 
of the bond only, and this is not the case in continuous glue joints in reality. 

Several modeling schemes have been published that do take into account the bonds 
of lap joints. Triangular or quadrilateral shaped two-dimensional plane stress or plane 
strain elements are most often used to model the adherends. Similar elements have been 
used to represent the adhesive component also5 14. Due to the geometry of gluelines, 
long thin elements are required for modeling and this results in very large aspect ratios 
for these elements. It has been established that an element tends to stiffen and lose 
accuracy as its aspect ratio increasesi5. Using two-dimensional planar elements to 
approximate the glueline necessarily makes the analysis meshdependent and may 
result in questionable accuracy in the region of the glueline. 

An alternative considered by some is a special interface element to represent the 
adhesive connection'6-20. Interface elements assume that the undisplaced nodes of one 
adherend are coincident with the corresponding nodes of the other .adherend. While 
this approach creates an element of zero thickness, the thickness of the glueline is 
usually taken into account in the stiffness matrix of the element and the elastic 
properties of the adhesive are required. This method is also mesh-dependent and 
reliant on material properties that are difficult to obtain reliably. The resulting 
localized inaccuracies have a large effect on the stress distributions in the region ofmost 
interest, the glueline. 

A special bond link element was developed in early finite element studies of 
reinforced concrete beams2' that shows some promise for use with bonded joints. With 
this approach, the adhesive connection would be considered an elastic medium acting 
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basically as tension and shear springs between the adherends. In a finite element 
model of a bonded joint, the adhesive connection would be conceptualized as a series 
of linear spring elements of zero dimension. The springs represent the stiffness of 
the connection. The forces in the springs give a measure of the bond stress distribution 
along the connection and the springs permit slippage to take place as the load is 
applied. The springs have no physical dimension and only the stiffnesses are used. 
With bond links, the model does take into account the adhesive connection, it is not 
mesh dependent, and it does not rely on properties that have been difficult to determine. 
This approach is based on the theory of elasticity and similar to that proposed by 
Cornel13. 

METHODS AND MATERIALS 

A general finite element model was developed for analysis of double lap shear wood 
connections that could be used to determine the influence of any desired material or 
geometric parameter and then expanded to account for other factors such as time 
dependency. Yellow-poplar (Liriodendron tulipiferu) was selected for experimental 
analysis because it glues very easily with a wide range of glues, under a wide range of 
gluing conditions and because the relative uniformity in anatomical structure would 
minimize variability in the results due to material inhomogeneities. The overlap lengths 
that were examined ranged from 12.7 mm to 44.5 mm in 6.35 mm increments (0.5” to 
1.75”). The dimensions represents a one-tenth scale of the overlap lengths used in 
timber wood truss and other mechanical connections. The side adherends were 50.8 
mm (2”) long by 25.4mm (1”) in cross section. The center adherend was 89 mm (3.5”) 
long by 25.4 mm (1”) in cross section. The adhesive was a resorcinol-formaldehyde 
structural wood adhesive. Figure 1 is a diagram of the general double lap shear 
structural wood connections examined in this study. 

Finite Element Model 

The model developed for this study was a two-dimensional, plane stress finite element 
model. The model is linear elastic, considers only static in-plane loads, and assumes 
orthotropic, homogeneous material properties for the adherends. Two dimensional, 
%node, isoparametric quadratic quadilateral elements were used to represent the wood 
adherends. A quadratic function is used to formulate both the geometry and displace- 
ment field for this element and the displacements may be either linear or quadratic. The 
element formulation is based on the standard isoparametric approach and can be 
found in many textbooks on finite element modeling, for example Ref. 22. A graded 
mesh ofelements was established that was fine near the gluelines and more coarse away 
from the gluelines. The coarse mesh furthest from the gluelines consisted of elements 
that were 1.59 mm (0.0625”) perpendicular to the gluelines and 6.35 mm (0.25”) in 
length, grading into elements that were 3.175 mm (0.125”) in length and 1.59 mm 
(0.625”) across. Elements near the gluelines were 1.59 mm (0.0625”) square. Figure 2 is 
an example of the element mesh used for the 12.7 mm (0.5”) overlap model. While the 
model geometry is symmetric about the centerline, the full model was analyzed rather 
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88.9 mm 

FIGURE 1 Diagram of general double lap shear structural wood connection. 

FIGURE 2 Example element mesh used for 12.7mm overlap length specimen. 

than taking advantage of the symmetry to allow for using dissimilar wood members as 
side adherends. Each species of wood used will process different mechanical properties 
and this must be taken into account in the full model if the side members are not the 
same type of wood. 
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The convergence requirements of the mesh were met by repeatedly analyzing 
the problem each time using a finer mesh of elements until no change was observed 
with further mesh refinement, The least number of adherend elements used was 
912 for the shortest overlap model and the most was 1920 for the longest overlap 
model. A compression load was applied to displacement-coupled nodes of the 
non-bonded end of the center adherend as seen in Figure 2, and the support conditions 
prohibited any translation or rotation of the nodes at  the free ends of the side 
adherends. 

The adherend material properties required for this element were the modulus 
of elasticity parallel to the grain ( E L )  the modulus of elasticity perpendicular 
to the grain ( E R ) ,  the shear modulus ( G R 3  and Poisson’s ratio (pRL). The average values 
for yellow-poplar test specimens at 9% moisture content were found to be: EL = 10.8 
GPa (1.57 x lo6 psi), E,  = 1.23 GPa (1.87 x lo5 psi), pRL =0.35 using ASTM 
D143-86 Standard Methods of Testing Small Clear Specimens of Timber23. The 
average shear modulus (G,& was derived using a mathematical expression that relates 
the shear modulus to the experimentally-measured values using Hooke’s law, and was 
determined to be 0.869 GPa (1.26 x 105psi). 

The adhesive connection was idealized as a series of spring elements of zero 
dimension (a linkage element). Linkage elements consisted of two linear spring 
elements placed at right angles to each other and located at  the coincident corner nodes 
of the adherend elements, as seen in Figure 2. Each spring had one degree of freedom 
(translation in either x or y), and displacement of each degree of freedom was 
completely independent of the other. The springs transmitted shear and normal forces 
between the nodes and represent the shear and normal stiffness of the adhesive 
connection. The forces in the bond links give a measure of the bond stress distribution 
along the connection. The bond links permit a certain amount of slippage to take place 
as the load is applied, but no fracture or failure component is included in this analysis. 
To ensure inter-element compatibility along the gluelines, the midside nodes of the 
adherend elements were removed along the sides that were on the gluelines, thereby 
making all elements along the gluelines linear. The lap joint section of the model was 
zero thickness and the linkage elements were placed at the coincident adherend corner 
nodes along the overlapped region. 

Because a high stiffness is generally experienced with good, rigid adhesive connec- 
tions between wood and structural adhesives, a high stiffness connection is assumed in 
this study. This situation is most commonly modeled by assigning large stiffness values 
to each element in the linkage element24-27. The actual stiffness values used in this 
study were determined through an equivalent stiffness study. An equivalent stiffness 
approach is required because using values of the adhesive modulus of elasticity and 
shear modulus obtained from bulk specimens of adhesive does not adequately repre- 
sent the actual stiffness of a structural wood connection28-30. With this approach, the 
values of the shear and normal stiffness of the adjacent wood elements are used as the 
initial trial values in the linkage elements along the overlap regions. The value of the 
maximum axial displacement in the wood-spring model is then compared with the 
maximum axial displacement in a solid-sawn wood model of exactly the same material 
and geometry. The comparison is made with a solid-sawn model beacuse it is assumed 
that the rigid-glued wood joint cannot exhibit displacement greater than that of solid 
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wood. The displacements from the solid-sawn model are used to scale the glueline 
stiffness to values that converge to those of a rigid, stiff bonded connection. These 
stiffness values were found to be two orders of magnitude greater than the stiffness 
of the adjacent wood elements. The value used for the normal stiffness was 
4.35 x lo’* kg/m (1.57 x 1081b/in) and for the shear stiffness 2.82 x 10”kg/m 
(1.02 x 1081b/in) was used. By using the linkage element approach to model the 
adhesive connection, the model does take into account the gluelines and it is neither 
mesh-dependent nor material-dependent. 

Experimental Evaluation 

Distribution of strain along the gluelines was experimentally measured using the 
Digital Image Correlation Technique (DICT) as described in Zink et ~ 1 . ~ ’ ~ ~ ~ .  This is a 
white light speckle technique that utilizes mathematical correlation of digital images of 
the test specimen surfaces recorded during mechanical testing. A cross correlation of 
two functions is used to indicate the relative amount of shifting between the two 
functions for various degrees of displacement. In the case of experimental mechanics, 
the displacement imposed on the test specimens during mechanical loading is measured 
as the degree of shifting of the light intensity patterns as found by the cross correlation 
criterion. In this study, a bilinear interpolation of the gray levels between pixels was 
used to represent the continuous pattern on the specimen and sub-pixel accuracy was 
achieved to the level of 0.01 pixels. The correlation function used for minimization was 
a least squares Correlation to measure how well the subsets match. A coarse-fine 
iterative procedure was employed for the searching algorithm. DICT has been em- 
ployed to obtain quantities of interest in such fields as rigid body mechanics, dynamics, 
fluid mechanics, biomechanics, fracture mechanics, and rnicrome~hanics~~ -39.  The 
technique has been applied to a vast range of loading, environmental and testing 
conditions, and materials. 

RESULTS AND DISCUSSION 

Comparison of Model and Experimental Values 

While the finite element method has become a well-established method of analysis for 
problems that cannot be addressed by classical analyses, the computed results must be 
judged in some way or compared with expectations before the model can be used with 
certainity. To validate the assumptions and results and to verify the accuracy of the 
model, the distributions of normal and shear stress along the gluelines were compared 
with experimental evidence from ten test joints. Figure 3 is an example plot of shear 
stress along the gluelines obtained from the finite element model and experimental 
testing for thejoints with 12.7 mm and 38.1 mm overlapped regions. Nine measurement 
points spaced 1.59 mm apart for the 12.7 mm overlap and 4.76 mm apart for the 38.1 
mm overlap were used to evaluate the stress levels along and across the gluelines. The 
location of the measurement points on the test specimen images corresponded to the 
nodal point location along the gluelines in the finite element model (illustrated in 
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FIGURE 3 Comparison of shear stress obtained with the finite element model and the experimental test 
specimens for the 12.7 mm and 38.1 mm overlap length specimens. 

Figure 2). The load level for this plot was 2260N. The strain values obtained from the 
experiments were converted to stresses using Hooke’s Law which is the assumed 
constitutive relationship for wood stressed in the elastic region of the stresslstrain 
behavior. The comparison is made at low load levels since the finite element model 
assumes linear, elastic behavior to failure, but wood is linear, elastic only for a portion 
of the loading process. 

While the trends exhibited by the model and the test values for the shear stresses are 
identical, the experimentally-measured values indicate more variability in the distribu- 
tion and lower values in general. Figure 4 is an example of the results of the comparison 
of normal stresses across the gluelines obtained with the model and the experiments on 
joints with 12.7 mm and 38.1 mm overlapped regions. Again, it is observed that the 
trends are similar but there are some slight differences in magnitude and variability. 
Deviation is greatest at the ends of the joints where the stress gradient is highest and is a 
result of assuming a rigid, stiff adhesive connection constructed with a very high 
modulus adhesive. Although the wood used for experimental verification was homo- 
geneous in anatomical structure, the elastic properties do vary on a microscopic scale 
and some variability is expected. Within the scatter of the experimental data for the ten 
joints tested, the model results predict the stresses along the gluelines very well. 

Model Distribution Along the Gluelines 

Because the general model stress values compared very well with those obtained 
experimentally, it can be used to evaluate joints made with any desired species of wood, 
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FIGURE 4 Comparison ofnormal stress obtained with the finite element model and the experimental test 
specimens for the 12.7mm and 38.1 mm overlap length specimens. 

non-identical adherends, other geometries or adhesive properties, and even joints with 
discontinuities in the gluelines or defects in the adherends. The influence of varying 
overlap lengths was investigated in this study to demonstrate the utility of this general 
model. 

The distribution of normal and shear stress was determined using the adherend 
nodes located along a glueline. Due to the geometric symmetry, the distribution as 
approximated by the finite element model is identical in magnitude and shape for both 
gluelines and the stresses for only one gluline are presented. Figure 5 is a plot of the 
shear stresses obtained with the finite element model for the nodes along a glueline for a 
series of overlap lengths at a load level 1560 N. Examination of Figure 5 indicates that 
the distribution of shear stress along the overlapped region is not uniform even for the 
longest overlaps studied. Because the rigidity of the adhesive in the joints is not 
negligible in comparison to the wood members and the load and support reactions are 
not co-linear, the stress distribution in these structural wood connection is quite 
complex. The maximum values of shear stress occur at each end of the lap joint and the 
minimum occurs at the center of the joint. As the overlap length increases, the 
distribution becomes more uniform, but at a diminishing rate. For example, for an 
overlap length increase from 12.7 mm to 19.1 mm, the reduction in peak shear stress is 
862 KPa but for the same 6.35 mm change from 38.1 mm to 44.5 mm in overlap length, 
the reduction in peak shear stress is only 172 KPa. With the longer overlapped regions, 
the load is transferred more uniformly and there is less stress concentration at the 
sharp, re-entrant corners at the joint ends. 
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shear joints. 

Shear stress obtained with the finite element model for a series of overlap lengths in double lap 
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FIGURE 6 
lap shear joints. 

Normal stress obtained with the finite element model for a series of overlap lengths in double 
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Figure 6 is a plot of the normal stresses across the glueline (oY) obtained with the 
general finite element model and varying overlap lengths at a load of 1560N. The 
normal stress distribution is very non-uniform for all the overlap lengths in this study. 
Very high compression stresses are indicated on one end of the lap joint and tension 
stresses at the other end. These normal stresses across the glueline arise because the 
directions of the applied load and the reactions at the supports of the lap joint are not 
co-linear and there is a bending moment applied to the side members of the joint. The 
convex bending of the side adherends causes the compression at the loaded end of the 
center adherend and tension at the bonded end. As with the shear stress for increased 
overlapped regions, the normal stress distribution becomes more uniform along the 
length of the joint at a diminishing rate. The concentration of stress at each end of the 
overlapped region is reduced with an increase in overlap length. 

SUMMARY AND CONCLUSIONS 

A general finite element model of structural wood/adhesive connections was developed 
that utilized a bond link approach to model the adhesive connection. The bond link 
consisted of two orthogonal spring elements, one representing the shear stiffness and 
the other, the normal stiffness of the connection. With the bond links, the model does 
take into account the adhesive connection, the model is not mesh-dependent, and does 
not rely on properties that have been difficult to determine. 

A comparison of the normal and shear stress distributions along and across the 
adhesive connection as determined with the finite element model and those obtained 
experimentally showed very close agreement. Once a finite element model has been 
verified with experimental evidence, it can be used in the place of costly and time- 
consuming experimentation. The utility of the model developed in this study was 
demonstrated by determining the influence of overlap length on the distribution and 
concentration of stress along the glueline. For the wood adherends used in this study, it 
was determined that the distribution of both normal and shear stresses was non- 
uniform and maximum values occurred at the ends of the overlapped regions. With 
increasing overlap length, both the normal and the shear stress distribution became 
more uniform and the concentration of stress at the corners of the joints was reduced. 
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